

EVALUATION TECHNIQUE DE PRODUITS ET MATERIAUX N° ETPM-22/0077-V2 du 26 mai 2025

concernant le ciment d'argile MCC1® pour béton Materrup®

Première édition : ETPM-22/0077-V1 du 2 juin 2022 Seconde édition : ETPM-22/0077-V2 du 26 Mai 2025

Titulaire et distributeur: Materrup - 440 rue des Estagnots - 40230 Saint Geours de Maremne

Usine : Materrup - Usine de Saint Geours de Maremne

Cette Evaluation Technique comporte 23 pages. Sa reproduction n'est autorisée que sous la forme de fac-similé photographique intégral sauf accord particulier du CSTB.

AVERTISSEMENT

Cette Evaluation Technique de Produits et Matériaux, du fait qu'elle ne vise qu'à déterminer des caractéristiques intrinsèques d'un produit ou d'un matériau, n'a pas de valeur d'Avis Technique au sens de l'arrêté modifié du 21 mars 2012. Elle ne dispense pas de vérifier l'aptitude du produit ou matériau à être incorporé dans un ouvrage déterminé, par consultation de documents de références de l'application considérée (NF-DTU, CPT, Avis Technique, ...).

EVALUATION TECHNIQUE

Ciment d'argile MCC1® pour béton Materrup®

DEFINITION SUCCINCTE

Le ciment d'argile MCC1[®] (Materrup Clay Cement 1®) est un liant à faible empreinte environnementale¹ en intégrant notamment de l'argile crue à la composition de son ciment. Le ciment d'argile MCC1[®] est destiné à la réalisation de bétons structuraux et non structuraux à partir de ressources locales et utilisées à proximité du lieu de production.

Le ciment d'argile MCC1[®] est un premix obtenu par mélange, dont les constituants principaux sont de l'argile crue non calcinée, un précurseur pouzzolanique, un activateur alcalin et un agent de mouture spécifique.

L'hydratation du ciment MCC1[®] est basée sur la formation d'hydrates cimentaires connus tels que les silicates de calcium hydratés (C-S-H et C-A-S-H) [5].

Le ciment d'argile MCC1[®] est un ciment, qui se distingue des ciments traditionnels par sa composition, présentée dans le tableau ci-dessous :

Tableau 1: Composition des ciments d'argile MCC1®

Les % indiqués sont des pourcentages massiques		% indiqués sont des pourcentages massiques Ciment d'argile MCC1®	
	Argile crue non calcinée	30 à 50%	Non couvert
	Précurseur pouzzolanique complémentaire	10 à 30%	Conforme EN 197-1
Constituants	Activateur clinker	20 à 50%	
Constituants	Agent de mouture spécifique	0,2 à 1,5%	Couvert en tant qu'additif organique dans l'EN197-1 (paragraphe 5.5) avec une borne de 0,2% maximum en poids de ciment sans nécessité de déclaration de la valeur supérieure.

NF EN 197-1 (Avril 2012) : Ciment – Composition, spécifications et critères de conformité des ciments courants NF EN 197-5 (Mai 2021) : Ciment – ciment Portland composé CEM II/C-M et ciment composé CEM VI

La composition, présentée en tableau 1, est large pour des raisons de confidentialité de celle-ci. Néanmoins, la formulation du ciment d'argile MCC1®, évalué dans le cadre de ce document, et ses tolérances de mélange a été déposée au CSTB [4]. De même, la nature minéralogique des argiles crues utilisées pour la fabrication du ciment MCC1® est mentionnée dans ce document confidentiel [4].

Les **applications envisagées** des bétons à base de ciment d'argile MCC1[®] sont les mêmes que celles d'un béton traditionnel. Les principales applications visées sont les suivantes :

- Superstructure : ouvrages coulés en place de type voiles, planchers en dalle pleine ;
- Infrastructures: fondations superficielle et profonde, semelles, massifs, longrines, radiers, murs enterrés...
- Dallage, dalle, dalle de compression
- Bétons de propreté et de calage ;
- Eléments préfabriqués structuraux : parpaings, produits pressés et/ou moulés
- Eléments préfabriqués d'aménagement : éléments décoratifs intérieur et extérieur, produits pressés et/ou moulés

Rappel : l'ETPM porte uniquement sur les caractéristiques intrinsèques du produit et ne préjuge pas de l'aptitude à l'emploi du produit dans l'ouvrage. Les applications précisées ci-avant sont données à titre indicatif.

¹ Le ciment d'argile MCC1® présente un bilan carbone de 353 kgCO2/T. Analyse de cycle de vie réalisée selon la norme NF EN 15804+A2 et son complément national NF EN 15804/CN. Ce document est disponible sur demande auprès de Materrup.

EVALUATION TECHNIQUE

Les propriétés du ciment MCC1® et des bétons MATERRUP® fabriqués à partir du ciment d'argile MCC1® présentées ci-après, résultent principalement de l'analyse des résultats d'essais réalisés présentés au paragraphe E du Dossier Technique.

Les granulats utilisés sont des granulats naturels (pas de granulats recyclés).

Le détail des essais réalisés et l'analyse qui en est faite sont reportés dans le rapport d'évaluation associé à cet ETPM (référence RT_ETPM-22/0077-V2 [1]). Ce rapport étant à usage confidentiel, le titulaire se réserve le droit de le communiquer.

Les performances ou exigences physico-chimiques du ciment MCC1[®] sont données dans le tableau ci-dessous.

Tableau 2: Performances ou exigences physico-chimiques du ciment

Caractéristiques ou propriétés	Méthode de vérification	Spécifications techniques
Résistance à la compression à court terme (à 2 jours)	NF EN 196-1*	≥ 10 MPa
Résistance à la compression courante (à 28 jours)	(dérogation au référentiel d'essai : rapport E/C=0,40)	≥ 42,5 MPa et ≤ 62,5 MPa
Temps de début de prise	NF EN 196-3	≥ 60 min
Stabilité (expansion)	NF EN 196-3	≤ 10 mm
Teneur en sulfate	NF EN 196-2	≤ 3,5 % en masse
Teneur en chlorure	NF EN 196-2	≤ 0,10 % en masse
Chaleur d'hydratation	NF EN 196-9	≤ 270 J/g
Masse volumique	NF EN 196-6	(2,84 ± 0,04) g/cm ³ (pour information)
Finesse (surface spécifique Blaine)	NF EN 196-6	(4800 ± 300) cm²/g (pour information)
Consistance normalisée	NF EN 196-3	(21,5 ± 2,0) % en masse (pour information)
Alcalins équivalents (Na ₂ O _{eq} = Na ₂ O + 0,658 K ₂ O)	NF EN 196-2	(0,39 ± 0,10)% en masse (pour information)

^{*} Note : pour les essais mentionnés, la méthode de préparation du mortier déroge à celui de la norme NF EN 196-1 §6. La composition du mortier est la suivante : (450 ± 2) g de ciment, $(1 \ 350 \pm 5)$ g de sable et (180 ± 1) g d'eau, soit un rapport eau/ciment = 0,40.

Les propriétés ou performances des bétons à base du ciment MCC1® sont données dans les paragraphes suivants.

Le dosage en liant peut varier en fonction des applications, des caractéristiques mécaniques et la consistance béton recherchées, entre 200 et 500 kg/m³.

Dans le cadre de l'ETPM, plusieurs formulations de béton ont été caractérisées, elles sont détaillées dans le tableau ci-dessous

Tableau 3 : Formulations des produits testés

Béton	N°	Formulations
Béton Materrup® Classe C30/37 f _{cm,28j} mesurée : 37,0 MPa	2	Dosage en ciment 300 kg/m³, Volume de pâte cimentaire de 29%, Fraction volumique de pâte : 31,9% Rapport E _{eff} /C de 0,50 avec des granulats de D _{max} 22 mm, Les granulats utilisés sont du sable 0/4 roulé alluvionnaire et des gravillons 6/10 et 11/22 concassés calcaire d'absorption WA24 ≤ 2,5% (noté type 2) Le G/S du squelette granulaire est de 1,14.
Béton Materrup® Classe C25/30 f _{cm,28j} mesurée : 33,7 MPa	3	Dosage en ciment 300 kg/m³, Volume de pâte cimentaire de 25%, Fraction volumique de pâte : 26,8% Rapport E_{eff}/C de 0,40 avec des granulats de D_{max} 22 mm, Les granulats utilisés sont du sable 0/4 SC alluvionnaire et des gravillons 4/11 et 11/22 SCL alluvionnaire d'absorption WA24 \leq 2,5% (noté type 3) Le G/S du squelette granulaire est de 1,16.
Béton Materrup® Classe C30/37 f _{cm,28j} mesurée : 38,9 MPa	4	Dosage en ciment 330 kg/m³, Volume de pâte cimentaire de 30%, Fraction volumique de pâte : 30,4 % Rapport E_{eff}/C de 0,45 avec des granulats de D_{max} 22 mm, Les granulats utilisés sont du sable 0/4 roulé alluvionnaire et des gravillons 6/10 et 11/22 concassés calcaire d'absorption WA24 \leq 2,5% (noté type 2) Le G/S du squelette granulaire est de 1,10.
Béton Materrup® Classe C35/45 f _{cm,28j} mesurée : 43,2 MPa	5	Dosage en ciment 380 kg/m^3 , Volume de pâte cimentaire de 31% , Fraction volumique de pâte : $34,5\%$ Rapport E_{eff}/C de $0,42$ avec des granulats de D_{max} 22 mm, Les granulats utilisés sont du sable $0/4$ roulé alluvionnaire et des gravillons $6/10$ et $11/22$ concassés calcaire d'absorption WA24 \le 2,5% (noté type 2) Le G/S du squelette granulaire est de $1,08$.

Pour information, les formules béton à base de MCC1® sont établies en utilisant le même principe que l'EN206+A2/CN [2] et le tableau NA.F.1 avec les adaptations suivantes :

Classe de résistance visée	dosage en MCC1® minimum (kg/m³)	E _{eff} /C maximum
C25/30	300	0,55
C30/37	300	0,52
C35/45	350	0,50

Les propriétés à l'état durci du béton à base du ciment MCC1® sont données dans le tableau ci-dessous.

Tableau 4 : Propriétés du béton à l'état durci Materrup® à base de ciment MCC1®

Caractéristiques ou propriétés	Méthode de vérification	Résultats béton Materrup®	Résultat du béton de référence
Résistance à la compression sur cylindres 11x22 cm (moyenne / écart type sur séries de 3) 3 formulations de béton Materrup® caractérisées (formules 2, 3 et 5)	NF EN 12390-3	Dosage 300 kg/m³ et $E_{eff}/C = 0,50$ $f_{cm, 28j} = 38,0$ MPa (écart type : 0,3) Dosage 300 kg/m³ et $E_{eff}/C = 0,40$ $f_{cm, 7j} = 21,7$ MPa (écart type : 0,6) $f_{cm, 28j} = 33,7$ MPa (écart type : 1,4) $f_{cm, 91j} = 37,8$ MPa (écart type : 0,5) Dosage 380 kg/m³ et $E_{eff}/C = 0,42$ $f_{cm, 28j} = 42,2$ MPa (écart type : 0,3)	Absence de données comparatives
Résistance à la traction par fendage sur cylindres 11x22 cm (moyenne / écart type sur séries de 3) 1 formulation de béton Materrup® caractérisées (formule 3)	NF EN 12390-6	Dosage 300 kg/m ³ et E _{eff} /C = 0,40 R _{ctm, 7 j} = 2,50 <i>MPa</i> (écart type : 0,15) R _{ctm, 28 j} = 3,20 <i>MPa</i> (écart type : 0,20) R _{ctm, 90 j} = 3,20 <i>MPa</i> (écart type : 0,40)	Absence de données comparatives
Module sécant d'élasticité sur cylindres 11x22 cm (moyenne sur séries de 3 essais) 3 formulations de béton Materrup® caractérisées (formules 2, 3 et 5)	NF EN 12390-13 (méthode B)	Dosage 300 kg/m³ et $E_{eff}/C = 0,50$ $E_{cm, 28j} = 32,7 \ GPa$ $(écart type : 0,1 \ GPa)$ Dosage 300 kg/m³ et $E_{eff}/C = 0,40$ $E_{cm, 28j} = 33,1 \ GPa$ $(écart type : 0,1 \ GPa)$ Dosage 380 kg/m³ et $E_{eff}/C = 0,42$ $E_{cm, 28j} = 35,4 \ GPa$ $(écart type : 2,0 \ GPa)$	Absence de données comparatives
Variations dimensionnelles (retrait total) Age du béton : 28 jours / t ₀ =24h Sur prismes 7x7x28 cm (moyenne sur séries de 3 essais) (mesures après 91 jours) 2 formulations de béton Materrup® caractérisées (formules 2 et 3)	NF EN 12390-16	$\begin{array}{l} \underline{Dosage~300~kg/m^3~et~E_{eff}/C=0,50}\\ V_{d,moy}=460~\mu m/m\\ (\acute{e}cart~type:14~\mu m/m)\\ (Perte~de~masse~totale~associ\acute{e}:\\ Vm,moy=2,7\%)\\ \\ \underline{Dosage~300~kg/m^3~et~E_{eff}/C=0,40}\\ V_{d,moy}=620~\mu m/m\\ (\acute{e}cart~type:40~\mu m/m)\\ (Perte~de~masse~totale~associ\acute{e}:\\ Vm,moy=3,1\%) \\ \end{array}$	Absence de données comparatives
Retrait et Fluage en compression	NF EN 12390-16	Dosage 300 kg/m³ et $E_{eff}/C = 0.50$ Retrait total ε_{cs} (195, 28) = 421 µm/m Dosage 380 kg/m³ et $E_{eff}/C = 0.42$ Retrait total ε_{cs} (195, 28) = 542 µm/m	Absence de données comparatives
Age du béton : 300 jours / t ₀ =28 jours Sur cylindres 10x30 cm (moyenne sur séries de 3 essais) 2 formulations de béton Materrup® caractérisées (formules 2 et 5)	NF EN 12390-17	Dosage 300 kg/m³ et $E_{eff}/C = 0.50$ Fluage total $ε_{dc}(195,28) = 71 \mu m/m/MPa$ Coefficient de fluage total $φ(195,28) = 2.4$ Dosage 380 kg/m³ et $E_{eff}/C = 0.42$ Fluage total $ε_{dc}(195,28) = 84 \mu m/m/MPa$ Coefficient de fluage total $φ(195,28) = 3.1$	Absence de données comparatives

Caractéristiques ou propriétés	Méthode de vérification	Résultats béton Materrup®	Résultat du béton de référence
Adhérence armature / béton (valeur caractéristique sur séries de 5 essais) Résistance du béton au moment des essais : R _{cm} = 29,8 MPa	EAD 330087-01- 0601 (essais statiques)	Sur armature type: HA 8: F _{db,exp} = 12,4 MPa HA 12: F _{db,exp} = 13,3 MPa HA 25: F _{db,exp} = 15,3 MPa Moyenne plage armatures testées HA8 à 25: F _{db,exp} = 13,7 MPa	Sur armature type: HA 8: F _{db,exp} = 13,8 MPa HA 12: F _{db,exp} = 13,0 MPa HA 25: F _{db,exp} = 13,2 MPa Moyenne plage armatures testées HA8 à 25: F _{db,exp} = 13,4 MPa
Formulation de béton Materrup® caractérisée : formule 2 Béton de référence à base de ciment CEM I 52,5 N formulé à 260 kg/m³ + 50 kg/m³ de filler et E _{eff} /C = 0,635	EAD 330087-01- 0601 (essais cycliques)	Sur armature type: HA 8 : F _{db,exp} = 10,2 MPa HA 12 : F _{db,exp} = 11,5 MPa HA 25 : F _{db,exp} = 15,4 MPa Moyenne plage armatures testées HA8 à 25 : F _{db,exp} = 12,4 MPa	Sur armature type: HA 8 : F _{db,exp} = 12,7 MPa HA 12 : F _{db,exp} = 12,6 MPa HA 25 : F _{db,exp} = 11,7 MPa Moyenne plage armatures testées HA8 à 25 : F _{db,exp} = 12,3 MPa
Comportement post-pic (valeurs moyennes sur séries de 5 essais) Formulation de béton Materrup® caractérisée : formule 2 Béton de référence à base de ciment CEM I 52,5 N formulé à 260 kg/m³ + 50 kg/m³ de filler et E _{eff} /C = 0,635	Protocole spécifique	Contrainte maximale $f_{cm} = (35,4 \pm 1,0) \text{ MPa}$ Déformation associée à f_{cm} $\mathcal{E}_{c1} = (1883 \pm 205) \mu\text{m/m}$ Contrainte à la rupture post-pic $f_{cm, rupture} = (24,5 \pm 4,5) \text{ MPa}$ Déformation associée à $f_{cm, rupture}$ $\mathcal{E}_{cu1} = (3173 \pm 338) \mu\text{m/m}$	Contrainte maximale $f_{cm} = (36,6 \pm 1.4) \text{ MPa}$ Déformation associée à f_{cm} $\mathcal{E}_{c1} = (1990 \pm 156) \mu\text{m/m}$ Contrainte à la rupture post-pic $f_{cm, rupture} = (28,2 \pm 3.9) \text{ MPa}$ Déformation associée à $f_{cm, rupture}$ $\mathcal{E}_{cu1} = (2813 \pm 275) \mu\text{m/m}$

Evaluation vis-à-vis de la durabilité

Une évaluation de la durabilité potentielle selon les classes de durabilité potentielles (AFGC 2004²) permet de donner une première approche de la durabilité potentielle des 4 formulations testées. Une synthèse est présentée dans le tableau 5 ci-dessous.

Tableau 5 : Synthèse des résultats des essais de durabilité sur béton Materrup®

Formule béton	Porosité accessible à l'eau (%) P eau	Résistivité électrique (Ω.m) ρ	Coefficient de diffusion apparent des chlorures (mesuré par essai de migration) (10 ⁻¹² m².s ⁻¹) D _{app(mig)}	Perméabilité apparente aux gaz (à P _{entrée} = 0,2 MPa et après étuvage à T = 105 °C) (10 ⁻¹⁸ m²) K _{gaz}
Materrup® Formule n°1 MCC1® = 300 kg/m³ et E _{eff} /C = 0,55	Moyen	Moyen	Moyen	Elevée
Materrup® Formule n°3 MCC1® = 300 kg/m³ et E _{eff} /C = 0,40	Moyen	Moyen	Elevée	Elevée
Materrup® Formule n°4 MCC1® = 330 kg/m³ et E _{eff} /C = 0,45	Moyen	Moyen	Moyen	Non mesurée
Materrup® Formule n°5 MCC1® = 380 kg/m³ et E _{eff} /C = 0,42	Moyen	Moyen	Moyen	Non mesurée

Guide AFGC 2004 - Tableau 9 : Synthèse des classes et valeurs limites (indicatives) relatives aux indicateurs de durabilité généraux (G) ou de substitution (S)

Classes et valeurs limites

			Classes et valeurs mintes						
	Durabilité potentielle →	Très faible	Faible	Moyenne	Elevée	Très élevée			
G	Porosité accessible à l'eau (%) Peau		14 à 16	12 à 14	9 à 12	6 à 9			
\mathbf{s}	Porosité mesurée par intrusion de mercure ($P_{\text{Hg}\ max} = 400\ \text{MPa}$ et prétraitement par étuvage à $T=45\ ^{\circ}\text{C}$ pendant 14 jours en présence de gel de silice) (%) P_{Hg}	> 16	13 à 16	9 à 13	6 à 9	3 à 6			
\mathbf{s}	Résistivité électrique (Ω .m) ρ	< 50	50 à 100	100 à 250	250 à 1000	> 1000			
G	Coefficient de diffusion effectif des chlorures (10·12 m².s·1) $\mathbf{D}_{\mathbf{eff}}$	> 8	2 à 8	1 à 2	0,1 à 1	< 0,1			
G	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	> 50	10 à 50	5 à 10	1 à 5	< 1			
G	$ \begin{array}{ccccc} \text{Coefficient de diffusion } apparent & \text{des } \\ \text{chlorures} & (\text{mesur\'e par essai} & \text{de } \\ \text{diffusion)} & (10^{-12} \text{ m}^2.\text{s}^{-1}) & \mathbf{D}_{\text{app}(\text{dif})} \\ \end{array} $	- 50	10 a 50	5 8 10	<	5			
G	$\begin{aligned} & \text{Perm\'eabilit\'e apparente aux gaz (\^a} \\ & \text{P}_{\text{entr\'ee}} = 0,2 \text{ MPa et apr\`es \'etuvage \^a} \\ & \underline{T = 105 ^{\circ}\text{C})} (10^{\text{-}18} \text{m}^{2}) \textbf{K}_{\text{gaz}} \end{aligned}$	> 1000	300 à 1000	100 à 300	10 à 100	< 10			
G	Perméabilité à l'eau liquide (à P_{max} , par mesure directe du flux, après saturation, cf. § 7.2.4.1 et 7.2.4.2) ($10^{-18}\mathrm{m}^2$) $k_{liq}^{(r)}$	> 10	1 à 10	0,1 à 1	0,01 à 0,1	< 0,01			
	Type de béton (indicatif et pour des formules simples)		B25 à B40	B30 à B60	B55 à B80	> B80			

² Guide AFGC, Conception des bétons pour une durée de vie donnée des ouvrages - Maîtrise de la durabilité vis-à-vis de la corrosion des armatures et de l'alcali-réaction - Etat de l'art et Guide pour la mise en œuvre d'une approche performantielle et prédictive sur la base d'indicateurs de durabilité, Juillet 2004

La durabilité des bétons Materrup® a ensuite été évaluée à partir d'essais en laboratoire. L'évaluation des résultats s'appuie sur le fascicule FD P18-480 [8] de justification de la durabilité des ouvrages en béton par méthode performancielle. Seule la méthode performancielle absolue a été utilisée.

Nous avons distingué les essais de vieillissement naturel ou accéléré (vitesse de carbonatation, cycles de gel/dégel...), qui visent à reproduire les processus de dégradation physico-chimiques des bétons, et les essais de type « indicateur » (porosité accessible à l'eau, résistivité électrique, coefficient de diffusion des chlorures...).

Les risques de dégradation évalués sur la base de cette démarche sont :

- Risque de corrosion des aciers induites par carbonatation
- Risque de corrosion des aciers induites par les ions chlorures
- Risque de dégradation des bétons par le gel interne,
- Risque de dégradation par écaillage des bétons soumis au gel en présence des sels de déverglaçage,
- Risque de dégradation par attaque sulfatiques externes,
- Risques de dégradation par attaque par les acides et les eaux pures

Tableau 6: Compositions minimales justifiants les classes d'exposition XC

		DPU 50 ans				DPU 10	00 ans		
		XC1	XC2	XC3	XC4	XC1	XC2	XC3	XC4
		Critère	s pour le c	iment MC	C1®				
Granulats avec une absorption < 2,5 %	Dosage mini en ciment (en kg/m³)	300	300	300	300	300	300	Non	300
	E _{eff} /C maxi	0,55	0,55	0,55	0,55	0,55	0,55	justifiée	0,55

Tableau 7 : Compositions minimales justifiants les classes d'exposition XS

		DPU 50 ans				DPU 1	00 ans		
		XS1	XS2	XS3e	XS3m	XS1	XS2	XS3e	XS3m
		Critè	eres pour le	ciment MC	C1®	on			
Granulats avec une	Dosage mini en ciment (en kg/m³)	300	300 330	None C	onfirmation	300	Non	Non	Non
absorption < 2,5 %	E _{eff} /C maxi	0,55	0,40 0,45	atustifiée	justifiée	0,55	justifiée	justifiée	justifiée

La satisfaction aux classes XD ne sera validée qu'à l'issue des essais complémentaires (Livrable attendu Juin 2025).

Tableau 8: Compositions minimales justifiants les classes d'exposition XD

		DPU 50 ans				DPU 1	00 ans		
		XD1	XD2	XD3f	XD3tf	XD1	XD2	XD3f	XD3tf
		Critè	res pour le	ciment Mo	CC1®	tion			
Granulats avec une	Dosage mini en ciment (en kg/m³)	300	300 330	300 330	htellor	300	300 330	300 330	Non
absorption < 2,5 %	E _{eff} /C maxi	0,55	0,40 0,45	0,40 0,45	justifiée	0,55	0,40 0,45	0,40 0,45	justifiée

La satisfaction aux classes XD ne sera validée qu'à l'issue des essais complémentaires (Livrable attendu Juin 2025).

Tableau 9: Compositions minimales justifiants les classes d'exposition XF

		DPU 50 ans			DPU 100 ans				
		XF1	XF2	XF3	XF4	XF1	XF2	XF3	XF4
		Critère	s pour le c	iment MCC	C1®				
Granulats avec une	Dosage mini en ciment (en kg/m³)	300	-	300	-	300	-	-	-
absorption < 2,5 %	Ee _{ff} /C maxi	0,55	-	0,45*	-	0,55	-	-	-

Tableau 10: Autorisations d'utilisation du ciment MCC1® selon les milieux et classes d'exposition XA.

Milieu	Classe	Dispositions concernant le ciment (tableau 2A de FD P18-011)			
	XA1	Pas de recommandations particulières, les préconisations de la NF EN 206+A2/CN s'appliquent.			
Milieu contenant des sulfates (solutions) à	XA2 (600 < x < 1 500 mg/l)	Vérification par essai performanciel effectuée (cf. Tableau 11). L'utilisation du ciment MCC1® sur les classes XA1 et XA2 est validée avec les limitations définies			
l'exclusion de l'eau de mer	XA2 (1 500 < x < 3000 mg/l)	dans le Tableau 11. En attente confirmation			
	XA3	Classe d'exposition non évalué			
	XA1	Pas de recommandations particulières, les préconisations de la NF EN 206+A2/CN s'appliquent.			
Milieu contenant des sulfates (sols)	XA2	Vérification par essai performanciel effectuée (cf. Tableau 11). L'utilisation du ciment MCC1® sur les classes XA1 et XA2 est validée avec les limitations définies dans le Tableau 11. En attente confirmation			
	XA3	Classe d'exposition non évalué			
	XA1	Vérification par essai performanciel effectuée (cf. Tableau 13). L'utilisation du ciment MCC1® sur les classes XA1 et XA2 est validée avec les limitations définies			
Milieux acides et eaux pures	XA2	dans le Tableau 13.			
	XA3	Classe d'exposition non évalué			

Tableau 11 : Compositions minimales justifiants les classes d'exposition XA (cas spécifique des attaques sulfatiques externes)

Fo	rmulation béton	Protocole RSE immersion séchage ΔL / L _s	Classe d'exposition XA (attaques sulfatiques externes) pour une DUP de 50 ans	
Bétons Materrup® à base de ciment MCC1®	Dosage 380 kg/m³, E _{eff} /C = 0,42 Granulats faible absorption <1.5%att	(mênce he ΔL / L _s : 0,105% (mênce he grandeur que le ΔL / L _s du Seton de référence à base de ciment CEM I SR3 et inférieur au seuil de 0,12% pour revendiquer la classe XA3)	Essais poursuivis sur 6 semaines. En attente pour la confirmation XA1 et XA2	

Tableau 12 : Compositions minimales justifiants les classes d'exposition XA (cas spécifique des attaques par hydrogène sulfuré H₂S (milieu propice à la biodégradation))

Formulation béton	Protocole PerfDub « Essai de biotérioration en présence d'hydrogène sulfuré (H ₂ S)	Classe d'exposition XA (milieux propices aux biodégradations) pour une DUP de 50 ans				
Non évalué						

Tableau 13 : Compositions minimales justifiants les classes d'exposition XA (cas spécifique des milieux acides et les eaux pures)

F	ormulation béton	Protocole XP P 18-482 « Essai de lixiviation à pH constant » Profondeur de lixiviation I _{Ca}	Classe d'exposition XA (milieux acides et eaux pures) pour une DUP de 50 ans
Bétons Materrup® à base de ciment MCC1®	Dosage 380 kg/m³, E _{eff} /C = 0,42 Granulats faible absorption <1,5%	l _{ca} = 0,38 mm (du même ordre de grandeur que lca du béton de référence à base de ciment CEM III/A 42,5)	XA1 et XA2

Alcali-réaction

Les alcalins totaux et les alcalins actifs des constituants du ciment MCC1® ont été mesurés.

Le bilan des alcalins solubles totaux dans le ciment MCC1[®] est inférieur à 0.4%.

Selon les préconisations du fascicule FD P18-464 [3], suivant la catégorie ou partie d'ouvrages (catégories I à III, définies au tableau 1 du FD P18-464 rappelés ci-dessous) et suivant la classe d'exposition vis-à-vis de l'alcali-réaction (Classe XAR1 à XAR3 définies au tableau 2 du FD P18-464 rappelés ci-dessous), il est défini un niveau de prévention.

Tableau 1 — Exemples informatifs de catégories d'ouvrages ou de parties d'ouvrages

•	•
Catégorie I	La plupart des ouvrages en béton de classe C20/25 ou inférieure; blocs en béton; éléments non porteurs situés à l'intérieur de bâtiments; éléments aisément remplaçables; ouvrages provisoires; la plupart des produits préfabriqués non structurels en béton; etc.
Catégorie II	La plupart des bâtiments et des ouvrages de Génie Civil : — ponts courants ; — petits barrages ; — châteaux d'eau ; — stations d'épuration ; — chaussées en béton ; — etc.
Catégorie III	Bâtiments réacteurs des centrales nucléaires et tours aéroréfrigérantes; grands barrages; tunnels; ponts ou viaducs exceptionnels; monuments ou bâtiments de prestige; etc.

Désignation de la classe d'exposition	Description de l'environnement	Exemples informatifs de type d'ouvrages ou de parties d'ouvrage illustrant le choix des classes d'exposition				
XAR1	Environnement sec ou peu humide (hygrométrie inférieure ou égale à 80 %)ª	Intérieurs de bâtiments d'habitations ou de bureaux; ouvrages protégés contre les sources d'eau, le intempéries et les condensations; dallages sur terre-plein drainé.				
XAR2	Environnement avec hygrométrie supérieure à 80% sans fondants salins ou en contact avec l'eau hors environnement marin	Parties Intérieures de bâtiments où l'humidité es élevée (laveries, réservoirs, piscines, etc.); parties extérieures exposées aux intempéries; parties en contact avec un sol et/ou de l'eau.				
XAR3	Environnement avec hygrométrie supérieure à 80 % et avec fondants salins, ou en environnement marin	Parties intérieures humides et parties extérieures exposées aux fondants salins ; éléments complètement ou partiellement immergé dans l'eau de mer ou éclaboussés par celle-ci ; éléments exposés à un air chargé en sel (zon côtère).				

Pour le ciment MCC1®, le niveau de prévention a été redéfini, en s'inspirant de celui présenté au tableau 3 du FD P18-464 :

Tableau 14 : Détermination du niveau de prévention pour l'emploi du ciment MCC1®

Classe d'exposition Catégorie d'ouvrage	XAR1	XAR2	XAR3	
I	Α	Α	Α	
II	Α	В	В	
III	Non visée	Non visée	Non visée	

Pour une utilisation en ouvrage de catégorie I ou II, il sera demandé les justifications suivantes :

- Niveau de prévention A :
 - Les constituants, autres que le ciment MCC1®, et leur mélange sont conformes aux normes, spécifications et règles de l'art en vigueur sans prendre de précaution particulière vis-à-vis de l'alcali-réaction. Pour ce niveau de prévention A, l'utilisation de granulats potentiellement réactifs (PR) et potentiellement réactifs à effet de pessimum (PRP) est autorisée.
- Niveau de prévention B :
 - Pour ce niveau de prévention, une formule de béton est acceptée s'il est possible de respecter l'une au moins des quatre dispositions suivantes :
 - ✓ Le béton est formulé avec des granulats classés comme non réactifs conformément au FD P18-542 et qualifiés sur la base d'un dossier carrière respectant les spécifications du FD P18-541.
 - ✓ Le béton est formulé avec des granulats classés comme PRP conformément au FD P18-542 et qualifiés sur la base d'un dossier carrière, et répondant en outre aux conditions particulières du FD P18-464 §6.3.1.2
 - ✓ La formule de béton satisfait aux critères du bilan des alcalins TOTAUX, à savoir la teneur moyenne en alcalins actifs totaux est inférieure à 3,0 kg/m³ et la teneur maximale en alcalins actifs totaux est inférieure à 3,3 kg/m³ (voir projet FD P18-484 [9] §6.2.7).
 - ✓ La formule de béton satisfait aux critères de l'essai de performance (voir FD P18-464 §6.3.3).

Réaction au feu

Le ciment d'argile MCC1® bénéficie d'un classement au feu A1 selon l'Arrêté du 21 novembre 2002 relatif à la réaction au feu des produits de construction et d'aménagement .

Sécurité d'utilisation

Le ciment d'argile MCC1[®] fait l'objet d'une fiche de sécurité type FDS.

De la même façon qu'un ciment Portland, il est nécessaire lorsque l'on manipule les ciments d'argile MCC1® ou mortiers/bétons à base de ciments d'argile MCC1® de porter les EPI adéquates :

- Protection des mains avec des gants imperméables résistant à l'abrasion et aux produits alcalins;
- Protection de la peau avec le port de vêtements à manches longues, port de bottes et d'un pantalon éventuellement imperméable notamment dans le cas de bétonnage au sol;
- Protection des yeux avec le port de lunettes de sécurité homologuées afin d'éviter tout contact avec les yeux;
- Protection des voies respiratoires avec un masque type FFP2 en environnement fermé / peu ventillé.

Environnement

Le ciment MCC1[®] fait l'objet d'un inventaire de cycle de vie (ICV) disponible sur la base INIES et de FDES disponibles sur demande.

CONDITIONNEMENT DU LIANT

Le ciment d'argile MCC1[®] est disponible par camion-citerne (vrac) ou camion plateau (sacs et big-bags).

CONTROLES

La fabrication du ciment MCC1[®] fait l'objet d'un contrôle portant sur la régularité de la fabrication. Ces contrôles porte :

- Sur les matières premières, à savoir :
 - o Granulométrie,
 - o pH,
 - o Teneur en eau,
 - Fluorescence X (composition chimique),
 - Surface spécifique Blaine (finesse),
 - o Masse volumique réelle,
 - o Essais sur mortier de référence (performance mécanique et rhéologique).
- Sur le produit fini.

La composition ainsi que le plan de contrôle du ciment MCC1[®] ont été déposé au CSTB [4].

Les contrôles effectués sont détaillés dans le Dossier technique établi par le demandeur, au paragraphe B.c.

CONCLUSIONS

Appréciation globale

L'évaluation du ciment MCC1® met en évidence les points suivants :

- <u>Vis-à-vis des propriétés mécaniques</u>: les propriétés mécaniques mesurées sur les différentes formulations de béton Materrup® de classe C25/30 à C35/45 (résistance à la compression, résistance à la traction par fendage, module sécant d'élasticité en compression) sont comparables avec celles déduites des relations de l'Eurocode 2 NF EN 1992-1-1.
- Vis-à-vis du retrait : le retrait total d'un béton Materrup® à base de ciment MCC1® est le du même ordre de grandeur (de l'ordre de 600 à 800 μm/m) que celui d'un béton à base de ciment Portland. Au sens de l'Eurocode 2 (EN 1992-1-1 §3.1.2), le ciment MCC1® peut être assimilé à un ciment de classe R. Il est à noter qu'un produit de cure est systématiquement préconisé afin de limiter les risques de retrait de dessication.
- <u>Vis-à-vis du fluage</u>: le fluage d'un béton Materrup® à base de ciment MCC1® est du même ordre de grandeur que celui d'un béton traditionnel (de l'ordre de 85 à 110 μm/m/MPa). Il convient de prendre en compte ce constat pour le dimensionnement des éléments de structure associés. Le coefficient de fluage en compression mesuré après 6 mois de d'essais est d'environ 3.
- Vis-à-vis de la loi de comportement (comportement post-pic): La relation contraintes-déformations est très similaire entre le béton à base de ciment type CEM I et le béton Materrup® à base de ciment MCC1® à résistance équivalente. Le modèle contraintes-déformations construit selon l'équation 3.14 et des formules du Tableau 3.1 de l'Eurocode 2 partie 1-1 permet bien de représenter le comportement en compression de façon à la fois sécuritaire et optimale que ce soit pendant la phase croissante ou la phase post-pic de la loi de comportement pour les deux bétons CEM I et MCC1®.
 La relation entre σc et εc pour le chargement uni-axial de courte durée peut s'appliquer aux bétons à base de ciment MCC1®. Cette relation est vérifiée pour toute valeur de |εc| dans l'intervalle 0 < |εc| < |εcu1|, où εcu1 est la valeur nominale de la déformation ultime. Le comportement contrainte-déformation pour le chargement uni-axial instantané peut donc s'appliquer aux bétons à base de ciment MCC1®.</p>
- <u>Vis-à-vis de la loi de comportement (comportement cyclique en compression)</u>: les comportements cycliques en compression de ces deux bétons à base de ciment MCC1[®] et de ciment CEM I sont équivalents, sur la plage de classe de résistance C25/30 à C35/45.
- <u>Vis-à-vis de l'adhérence acier/béton (statique et cyclique)</u>: des essais d'adhérence (statiques et cycliques) des aciers HA8 à HA25 dans le béton à base de ciment MCC1[®] montrent que l'adhérence est du même ordre de grandeur que celle d'un béton traditionnel, sur la plage de classe de résistance C25/30 à C35/45. Vis-à-vis des essais d'adhérence cyclique acier-béton, pour le béton Materrup[®], le cyclage n'affecte pas de façon différente les performances d'adhérence acier-béton, en comparaison du béton de référence.

- Reprise de bétonnage : Le comportement en cisaillement du béton Materrup® à base de ciment MCC1® testé présentent des performances équivalentes ou meilleures en comparaison à un béton standard de même classe de résistance.
 - Les règles de calcul de la résistance en cisaillement le long des surfaces de reprise selon le §6.2.5 de l'Eurocode 2 partie 1-1 s'appliquent pour le béton Materrup® à base de ciment MCC1®.
- <u>Vis-à-vis du risque de corrosion des aciers induites par carbonatation (classes d'exposition XC)</u>:
 L'évaluation a été effectuée par une approche absolue (vitesse de carbonatation et porosité accessible à l'eau);

La vitesse de carbonatation des bétons à base de ciment MCC1[®] est en dessous du seuil le plus faible demandé. Les classes d'exposition XC justifiées sont données dans le Tableau 6.

Enfin, la satisfaction aux classes d'exposition XC n'est valable qu'aux formulations ayant fait l'objet de cette démarche d'évaluation ou à des formulations équivalentes au sens du fascicule FD P18-480.

Des dérivées en composition peuvent être considérées comme satisfaisant aux mêmes exigences, sous réserve de respecter les critères du Tableau 6 :

- Granulats ayant une absorption d'eau inférieure ou égale (\leq)
- Même nature de ciment et dosage a minima équivalent (≥)
- Rapport E_{eff}/C a maxima équivalent (≤)
- Une durée d'utilisation de projet (DUP) équivalente
- Vis-à-vis du risque de corrosion des aciers induites par les ions chlorures de l'eau de mer des bétons à base de MCC1® (classes d'exposition XS): L'évaluation a été effectuée par l'approche absolue (coefficient de migration des ions chlorures). L'essai de migration des ions chlorure en régime non stationnaire XP P 18-462 étant un essai accéléré, l'évaluation du risque de corrosion a également été réalisée sur la base d'un essai plus proche d'un vieillissement naturel (essais comparatifs menés selon la norme d'essais NF EN 12390-11). Les classes d'exposition XS justifiées sont données dans le Tableau 7. La satisfaction aux classes XS ne sera validée qu'à l'issue de cette campagne d'essais complémentaires. Ces conclusions sont données à titre indicatif.

Enfin, la satisfaction aux classes d'exposition XS n'est valable qu'aux formulations ayant fait l'objet de cette démarche d'évaluation ou à des formulations équivalentes au sens du fascicule FD P18-480. Des dérivées en composition peuvent être considérées comme satisfaisant aux mêmes exigences, sous réserve de respecter les critères du Tableau 7 :

- Granulats ayant une absorption d'eau inférieure ou égale (≤)
- Même nature de ciment et dosage a minima équivalent (≥)
- Rapport E_{eff}/C a maxima équivalent (≤)
- Une durée d'utilisation de projet (DUP) équivalente
- Vis-à-vis du risque de corrosion des aciers induites par les ions chlorures autres que ceux de l'eau de mer des bétons à base de MCC1® (classes d'environnement XD): L'évaluation a été effectuée par l'approche absolue (coefficient de migration des ions chlorures). L'essai de migration des ions chlorure en régime non stationnaire XP P 18-462 étant un essai accéléré, l'évaluation du risque de corrosion a également été réalisée sur la base d'un essai plus proche d'un vieillissement naturel (essais comparatifs menés selon la norme d'essais NF EN 12390-11). Les classes d'exposition XD justifiées sont données dans le Tableau 8. La satisfaction aux classes XD ne sera validée qu'à l'issue de cette campagne d'essais complémentaires. Ces conclusions sont données à titre indicatif.

Enfin, la satisfaction aux classes d'exposition XD n'est valable qu'aux formulations ayant fait l'objet de cette démarche d'évaluation ou à des formulations équivalentes au sens du fascicule FD P18-480. Des dérivées en composition peuvent être considérées comme satisfaisant aux mêmes exigences, sous réserve de respecter les critères du Tableau 8 :

- Granulats ayant une absorption d'eau inférieure ou égale (≤)
- Même nature de ciment et dosage a minima équivalent (≥)
- Rapport E_{eff}/C a maxima équivalent (≤)
- Une durée d'utilisation de projet (DUP) équivalente
- Vis-à-vis du risque de dégradation par le gel interne et par l'écaillage des bétons soumis au gel en présence des sels de déverglaçage (classes d'environnement XF): Afin de garantir la satisfaction aux classes d'environnement de résistance au gel, le béton à base de ciment MCC1® devra disposer d'une formulation adaptée. Les classes d'exposition XF justifiées sont données dans le Tableau 9.
 - Seule la formulation de béton Materrup®, dosé à 300 kg/m³ de ciment MCC1®, avec un E_{eff}/C de 0,45 et une utilisation d'entraineur d'air présentant 6% d'air occlus, a justifié l'essai de gel interne NF P 18-425 et validant ainsi la classe d'environnement XF3 (et de fait XF1).
 - Néanmoins, au sens du fascicule FD P18-480, la classe d'exposition XF1 peut être validée en approche performantielle sur la base des exigences requises pour la classe XC4.
- Vis-à-vis des attaques par les acides et les eaux pures (classe d'environnement XA):
 L'évaluation a été effectuée par une approche comparative sur béton (essais de lixiviation sur une formulation de béton à base de ciment MCC1® en comparaison avec une à base de CEM III/A 42,5).
 Les classes d'exposition XA justifiées sont données dans les Tableaux 10 et 13.
- Vis-à-vis de la résistance aux attaques sulfatiques externes (classe d'environnement XA):
 L'évaluation a été effectuée par deux approches: une approche comparative sur mortier et une approche comparative sur béton (essais protocole RSE par immersion séchage sur une formulation de béton à base de ciment MCC1® en comparaison avec une à base de CEM I SR3).
 Les classes d'exposition XA justifiées sont données dans les Tableaux 10 et 11. La satisfaction aux classes XA ne sera validée qu'à l'issue de la prolongation des essais (durée 6 semaines). Ces conclusions sont données à titre indicatif.
- <u>Vis-à-vis des risques liés à l'alcali-réaction</u>: Par un bilan des alcalins solubles totaux des différents constituants du ciment, le bilan des alcalins solubles totaux dans le ciment MCC1® est inférieur à 0,4%. Cette valeur peut être prise en compte dans le bilan des alcalins d'une formulation de béton.

Validité: 5 ans

Validité jusqu'au : 26 mai 2030

Direction Sécurité, Structures et Feu Le Directeur

Driss SAMRI

DOSSIER TECHNIQUE ETABLI PAR LE DEMANDEUR

A. INTRODUCTION

La société Materrup fabrique des ciments à très faible empreinte environnementale en intégrant notamment de l'argile crue à la composition de son ciment. Le ciment d'argile MCC1® (Materrup Clay Cement 1®) se distingue des ciments traditionnels par sa composition à base d'argile crue, issue de ressources locales et utilisée à proximité du lieu de production.

Le ciment d'argile MCC1® répond au besoin de nombreuses applications : voile, dallage, dalle, prémur, bloc/parpaings, éléments préfabriqués divers. Il se substitue donc aux ciments conventionnels pour la fabrication de bétons, structurels ou non, que ce soit le prêt à l'emploi ou le préfabriqué. A l'heure actuelle (janvier 2025), plusieurs dizaines de milliers de m³ de béton Materrup ont été coulés sur un large panel d'applications allant du béton prêt à l'emploi (gros béton, fondations, dallage, voile, drainant, extrudé, BCR, décoratif – balayé ; désactivé ; bouchardé ; poncé ; poli etc.) en passant par la préfabrication pressée (parpaings, bordures, dalles gazon etc.) et la préfabrication coulée (mobilier urbain, prémurs, pièces préfabriquées sur mesure etc.).

Le ciment d'argile MCC1® se présente sous une forme similaire à celle d'un ciment conventionnel c'est-à-dire en poudre pouvant être stockée en sacs, en big-bags ou encore dans des silos, placée dans un malaxeur par bande transporteuse ou vis et transportée de l'usine de fabrication de Saint-Geours de Maremne vers les centrales à béton ou site de préfabrication par camion-citerne (vrac) ou camion plateau (sacs et big-bags).

La présente Evaluation Technique porte sur le ciment d'argile MCC1® et plusieurs formulations de béton Materrup® à partir du ciment d'argile MCC1®. Après coulage, le béton Materrup® ne nécessite pas de traitement thermique particulier.

B. FABRICATION DU CIMENT

a. Matières premières

Les matières premières constituant le ciment d'argile MCC1® sont les suivantes :

- Argile crue non calcinée
- Précurseur pouzzolanique complémentaire
- Activateur clinker (ou CEM I)
- Agent de mouture spécifique

Le dosage des constituants pour la formulation du ciment d'argile MCC1® est unique et a été communiquée au CSTB. Ce ciment se présente sous la forme d'une poudre de couleur beige.

La sélection des argiles et la vérification de leur homogénéité (minéralogie, granulométrie, composition chimique etc.) est réalisée en amont par Materrup. Les argiles utilisées pour formuler le ciment MCC1® sont issues de carrières et correspondent à des argiles non valorisées par d'autres industriels (terre cuite, boue de lavage, argiles de découverture, stériles etc.). A terme, l'objectif de Materrup est de valoriser directement des argiles issues de terres d'excavation (par exemple métro Parisien), cela dit, cela implique des niveaux de complexité dans la gestion des stocks et la constance de la qualité du produit qui sont importants. Ainsi, dans le cadre de la présente ETPM, seules des argiles issues de stocks bien qualifiés sont utilisées pour formuler le ciment MCC1®. L'argile est séchée et broyée selon un procédé spécifique avant d'être utilisée dans le ciment d'argile MCC1®. Les caractéristiques de l'argile sont contrôlées et ont été communiquées au CSTB.

b. Fabrication

Le ciment d'argile MCC1[®] est fabriqué par mélange des poudres constitutives dans un mélangeur de poudres d'une capacité de 2000L. Les différents constituants sont stockés soit dans des silos soit en big-bags.

Les tolérances de mesure sur les différents composants sont indiquées dans le plan de contrôle qualité [6].

c. Contrôles

Un plan de contrôle qualité sur le ciment d'argile MCC1® a été défini afin d'assurer le respect des exigences de fabrication [6].

Les contrôles sont réalisés sur :

- Le ciment d'argile MCC1® fabriqué via :
 - Une analyse de composition des produits finis notamment à l'aide de la fluorescence X,
 - Une analyse des performances par comparaison des performances du produit fini de référence selon la norme NF EN 197-1 (en routine, mesure des résistances en compression sur mortier selon un mode opératoire découlant de la norme NF EN 196-1).
- Les matières premières, à savoir :
 - o Granulométrie,
 - o pH,
 - o Teneur en eau,
 - o Fluorescence X (composition chimique),
 - Surface spécifique Blaine (finesse),
 - o Masse volumique réelle,
 - o Essais sur mortier de référence (performance mécanique et rhéologique).

d. Conditionnement et livraison

Le conditionnement à sec du ciment d'argile MCC1® peut être en sac, en big-bag ou en vrac. Pour le conditionnement en sac, ces derniers sont disposés sur une palette houssée stockée dans une zone couverte à l'abri de l'humidité. Les sacs et big-bags sont transportés vers leur lieu de livraison par camion plateau. Le ciment d'argile MCC1® vrac est transporté par camion-citerne.

C. FABRICATION DU BETON

a. Centres de fabrication du béton associé

Introduction

Le ciment d'argile MCC1® est utilisé comme un ciment conventionnel dans la composition des bétons Materrup® fabriqués à partir de centrales à béton dans des unités de :

- Préfabrication
- Bétons prêts à l'emploi

Descriptif de la centrale

La Centrale à béton doit être équipée :

- De silos de stockage à ciment ;
- De cases à granulats;
- De pompes à adjuvants;
- D'un malaxeur;
- Des systèmes de transfert de la matière (vis, skip de chargement etc.)

Equipements nécessaires

La centrale à béton doit être équipée d'un automate pour gérer les ordres d'introduction des constituants, leurs pesées, le temps et l'énergie de malaxage.

b. Compositions

Le béton Materrup® est préparé par mélange des constituants suivants :

- Ciment d'argile MCC1®;
- Granulats:
- Eau
- Adjuvants tels que : entraineur d'air, accélérateur, retardateur, agent rhéologique...

Les dosages en ciment d'argile MCC1® pour la fabrication de béton Materrup® peuvent varier entre 200 kg/m³ et 500 kg/m³, selon les performances mécaniques visées et la consistance du béton recherchée.

Materrup s'engage à mettre à disposition de ses clients et partenaires son service assistance technique, ses capacités d'innovation ainsi que son laboratoire qualité pour accompagner ces derniers dans la mise au point de leur formulation béton.

A titre d'exemple, une assistance technique est apportée par Materrup :

- à la maitrise d'œuvre ou aux bureaux d'études d'exécution pour l'aide au dimensionnement des ouvrages du procédé MCC1[®],
- à la centrale de béton prêt à l'emploi pour la mise au point des formulations béton,
- à l'entreprise de gros-œuvre pour la mise en œuvre sur chantier du béton Materrup .

Dans le cas de la première production de béton à base de Ciment d'argile MCC1[®] d'une nouvelle centrale à béton, une assistance technique est apportée par Materrup pour la mise au point des formulations, des essais initiaux de production, des planches d'essais, d'épreuves de convenance ainsi que l'analyse des résultats.

Les principes de contrôle qualité béton sur chantier et en laboratoire avec le ciment d'argile MCC1[®] a été déposé au CSTB [7].

Pour des rapports E/C (eau sur ciment d'argile) au-delà de 0,55, la quantité d'eau ajoutée est considérée comme trop importante : cette dernière vient modifier et perturber les équilibres chimiques ainsi que les cinétiques de prises. Le rapport $E_{\rm eff}/C$ devra respecter les critères spécifiés dans l'EN 206 en vigueur et devra faire l'objet d'une validation par le laboratoire R&D Materrup mais le rapport $E_{\rm eff}/C$ ne devra en aucun cas être supérieur à 0,55.

D. APPLICATIONS ENVISAGEES

Les applications envisagées des bétons à base de ciment d'argile MCC1® sont les mêmes que celles d'un béton traditionnel.

Les principales sont les suivantes :

- Plancher
- Voile
- Dallage
- Radier
- Fondation superficielle et profonde.
- Eléments préfabriqués structuraux : parpaings, produits pressés et/ou moulés

La liste des adjuvants et produits de cure autorisés pour formuler un béton à base de ciment d'argile MCC1® est disponible auprès de la société Matterup ou devra faire l'objet d'une validation de compatibilité de la part de la R&D Materrup.

Pour information : l'ETPM porte uniquement sur les caractéristiques intrinsèques du produit et ne préjuge pas de l'aptitude à l'emploi du produit dans l'ouvrage. Les applications précisées ci-avant sont donc données à titre indicatif.

E. RESULTATS EXPERIMENTAUX

LERM.SETEC, Bulletin d'analyse n°50883-1, du 23 décembre 2021

LERM - Rapport 58693.02 - Evaluation alcali réaction, février 2025

Materrup - Document interne concernant la constance de la performance du MCC1, mars 2025

CSTB, Rapport d'essais n° DSSF 21-02835/A-1, du 3 févier 2022

SIGMA BETON, Rapport n° R220803200019 Résistance à la compression, à la traction, le module sécant d'élasticité et la variation dimensionnelle sur la formulation Materrup C30/37, août 2022

CRIC fluage sur béton Materrup - rapports E-24-970 et E-24-995, rapports intermédiaires février 2025

Materrup, Rapport ES-12-21-1, Caractérisation sur bétons frais et bétons durcis de plusieurs formulations de béton Materrup®, 2 Avril 2025

LMDC, Rapport ET/21.037 « Etude fluage sur béton d'argile CC1 », 22 décembre 2021

Auto-Béton Contrôles, L05-RAP-BET-2024-0003-A, Suivi des variations dimensionnelles sur béton durci, octobre 2024

CSTB Rapport d'essais n° EEM 24-35849/B Comportement post-pic en compression, Février 2025

CSTB, Rapport d'essais n° EEM 24-35849-C Compression cyclique, Février 2025

CSTB, Etude n°00210055, Exploitation et interprétation des essais post-pic et des essais

cycliques à petite et grande échelles, 28 mars 2025

CSTB, Rapport d'essais n° EEM 24-35849/A Adhérence statiques et sismiques sur armatures, Novembre 2024

CSTB, Rapport d'essais n° EEM_24 36516 Concernant la caractérisation de la reprise de bétonnage pour ouvrages préfabriqués du béton Materrup, décembre 2024

CSTB, Etude n°00210057, Exploitation et interprétation des essais comparatifs de reprise de

bétonnage entre béton Materrup MCC1 et béton de référence CEM I, 18 février 2025

LERM.SETEC, PV d'essais n°50883/7736.LP « Caractérisation physique d'un mortier de liant d'argile crue », du 5 avril 2022

LERM.SETEC, Rapport n°50883.01.01.C « Résistance aux attaques acide et sulfatiques d'un mortier à base de ciment d'argile crue », du 27 juin 2022

LERM - résultats durabilité complémentaires, projet février 2025

SIGMA BETON, Rapport E2203200300 Porosité, migration chlorures, Perméabilité au gaz, du 26 septembre 2022

SIGMA BETON, Rapport E2203200304 Résistivité électrique et de carbonatation accélérée

LERM.SETEC, PV d'essais n°50883/771.LP « Essais de gel/Dégel sur béton durci », du 3 mars 2022

LERM – résultats lixiviation (eaux acides/eaux pures), projet avril 2025

LERM - résultats RSE, projet avril 2025

Materrup, rapport ES-25-03-2025A, Essai de performance NF P18-454, mars 2025

Materrup, note associée au rapport ES-25-03-2025A, Bilans des alcalins sur formulation béton, mars 2025

Materrup, essais au scléromètre sur béton âgé de 4 ans, avril 2025

CSTB, Rapport d'essais n°DSSF 24-36538/A Essai de résistance au feu sur mur porteur en béton bas carbone contenant des fibres polypropylènes, projet Mars 2025

CSTB, Rapport d'essais n°DSSF 24-36538/B Essai de résistance au feu sur mur porteur en béton bas carbone non fibré, projet Mars 2025

CSTB, Procès verbal de classement RS24-002, 22 janvier 2024

Auto Béton Contrôles, rapport n°L05-RAP-ARR-2025-24-004-A, Arrachement ancrages, Mars 2025

Inventaire de cycle de vie MCC1, juin 2023

FDES Bloc creux B40 de 20cm d'épaisseur à base de ciment MCC1, décembre 2023

FDES Bloc creux B60 de 20cm d'épaisseur à base de ciment MCC1, décembre 2023

ETPM-22/0077-V2 du 26 Mai 2025

F. REFERENCES DOCUMENTAIRES

- [1] RT_ETPM-22/0077-V2 Rapport technique de l'Evaluation Technique de Produits et Matériaux N° ETPM-22/0077-V2 du 26 Mai 2025 concernant le produit de « ciment d'argile MCC1® pour béton Materrup®»
- [2] NF EN 206+A2/CN: « Béton Spécification, performance, production et conformité Complément national à la norme NF EN 206+A2 », Novembre 2022
- [3] FD P18-464 : « Béton Dispositions pour prévenir les phénomènes d'alcali-réaction », Juin 2021
- [4] MATERR'UP, Document confidentiel relatif au liant MCC1®, Composition du liant, liste des auto-contrôles réalisés sur le liant, mars 2025
- [5] MATERR'UP, Note technique confidentielle présentant le processus d'hydratation du ciment MCC1[®], Juin 2023
- [6] Plan de contrôle qualité (usine et produits finis), Avril 2024
- [7] Plan de contrôle qualité béton PQB01, Mars 2022
- [8] FD P18-480 : « Justification de la durabilité des ouvrages en béton par méthode performantielle », version 2022
- [9] prFD P18-484 : « Guide d'élaboration d'un dossier technique pour évaluer un nouveau liant ou une nouvelle addition », projet février 2025

G. CHANTIERS DE REFERENCE

Depuis l'obtention de la première version de l'ETPM, de nombreux chantiers et réalisations ont été réalisés à base de ciment MCC1® dans toutes les conditions de température (5°C à 30°C), météo (soleil, vent, nuage, taux d'humidité élevé et faible etc.) et sur un large panel de typologie de béton (décoratif, extrudés, drainant, fondations, dallages, voiles, préfabrication légère et lourde etc.).

Le tableau ci-après répertorie ces références.

			rtorie ces referen			T			
Туре	Année	Mois	Lieu	_	Centrale	Type d'ouvrage	Classe	Vol (m3)	Rc 28 à jours (MPa)
BPE	2021	juillet	Saint Geours de Marer		Toupie	dallage	C25/30	3,3	29
BPE	2021	juillet	Saint Geours de Marer	40	Toupie	voile	C25/30	1,2	28
BPE	2021	octobre	Herm	40	Bétonnière	dallage	C25/30	2,4	
BPE	2021	décembre	Herm	40	Bétonnière	bloc	C25/30	3	
Préfa	2021		Saint Geours de Marer	40	Materrup interne	DG & Lego blocs	C25/30	50	
BPE	2022	mai	Chatillon sur Chalaron	01	Béton Vicat	dallage	C30/37	4	38
BPE	2022	novembre	Josse	40	Duhalde Josse	balayé	C25/30	1	38
BPE	2022	novembre	Josse	40	Duhalde Josse	bouchardé	C25/30	1	35
BPE	2022	novembre	Josse	40	Duhalde Josse	désactivé	C25/30	1	37
BPE	2022	décembre	Saint Geours de Marer	40	Duhalde Josse	dallage	C25/30	200	30
BPE	2022	novembre	Champs sur Marne	77	CSTB	voile	C25/30	8	28
Préfa	2022	année	Saint Geours de Marer	40	Materrup interne	DG & Lego blocs	C25/30	300	
Préfa	2022	année	Urrugne	64	PBL	préfa sur mesure	C25/30	60	37
Préfa	2022	année	Sainte Gladie	64	Etchegintza	préfa légère	B40-B60	450	
BPE	2023	janvier	Benesse Maremne		Duhalde Josse	voile éphémère	C25/30	2	
BPE		février	Saint Vincent de Tyros		Duhalde Josse	balayé	C25/30	5	
BPE	2023	novembre	Escource		Duhalde Josse	balayé	C25/30	28	31
BPE	2023	novembre	Ortheveille	40	Duhalde Josse	extrudé	C30/37	2	49
BPE	2023	juin	Dax		Duhalde Josse	dallage	C25/30	6	43
BPE	2023	novembre	Ortheveille	40	Duhalde Josse	balayé	C25/30	16	37
BPE	2023	mars	Soustons	40	Duhalde Josse	dallage	C30/37	130	33
BPE		novembre	Souprosse		Béton Montois	balayé	C25/30	38	31,4
BPE	2023	novembre	•		Denis Béton	dallage	C25/30	5	28
BPE	2023	novembre	Arjuzanx		Unelo	BCR - piste cyclable	BC5	90	
Préfa	2023	année	Saint Geours de Marer	40	Materrup interne	DG & Lego blocs	C25/30	600	
Préfa	2023	année	Urrugne		PBL	préfa sur mesure	C25/30	200	35
Préfa		année	Sainte Gladie	64	Etchegintza	préfa légère	B40-B60	225	
Préfa	2023	année	Redon		Perin	préfa légère	B40-B60	225	
Préfa	2023	année	Elven	56	Perin	préfa légère	B40-B60	225	
Préfa	2023	année	Saint Vulbas	1	LIB	préfa légère	B40-B60	450	
Préfa	2023	année	Nîmes	30	LIB	préfa légère	B40-B60	450	
BPE	2024	octobre	Hossegor	40	Unelo	BCR - voie piétonne	BC3	4	
BPE	2024		Soustons		Unelo	BCR - piste cyclable	BC5	5	
BPE			Saint Vincent de Tyros	40	Unelo	balayé	C25/30	10	
BPE			Amou		Béton Montois	balayé	C25/30	180	
BPE		juin-juillet	Amou		Béton Montois	drainant	BC3	75	
BPE		Juillet	Arthez d'Armagnac		Béton Montois	balayé	C25/30	35	
BPE		février	Maurrin	40	Béton Montois	balayé	C25/30	28	25,5
BPE	2024		Nonères		Béton Montois	balayé	C25/30	35	,
BPE	2024	avril	Maurrin		Béton Montois	balayé	C25/30	30	30
BPE			Arthez d'Armagnac	40	Béton Montois	balayé	C25/30	30	
BPE		aout	Cère		Béton Montois	désactivé	C25/30	5	
BPE		février	Mont de Marsan		Béton Montois	drainant	BC3	48	
BPE		novembre	Mont de Marsan		Béton Montois	drainant	BC3	30	
BPE	2024		Cazere sur l'Adour		Béton Montois	drainant	BC3	20	
BPE	2024	-	Cadillon		Béton Montois	drainant	BC3	20	
BPE		mars	Mont de Marsan		Béton Montois	extrudé	C30/37	84	31
BPE		juillet	Haut Mauco		Béton Montois	voile	C25/30	5	28
BPE		-	Anglet		Duhalde Ustaritz	balayé	C25/30	30	35

BPE	2024	juin	Anglet	64	Duhalde Ustaritz	drainant	вс3	15	
BPE	2024	juin	Anglet		Duhalde Ustaritz	balayé	C25/30	20	
BPE	2024	,	Anglet		Duhalde Ustaritz	balayé	C25/30	30	
BPE			Souffelweyersheim		Fehr Hochfelden	fondations	C25/30	50	
BPE		décembre	Tarnos		Duhalde Josse	fondations	C25/30	26	27
BPE	2024	iuillet	Cambo les Bains	64	Duhalde Ustaritz	désactivé	C25/30	50	
BPE		novembre	Saint Martin de Seigna		Duhalde Ustaritz	balayé	C25/30	20	
BPE	2024	mars	Castagnède		Etche Ste Glaidie	drainant	BC3	10	
BPE	2024	avril	Mauléon Licharre	64	Etche Ste Glaidie	drainant	BC3	80	
BPE	2024	mars	Benesse Maremne	40	Duhalde Josse	balayé	C25/30	12	29
BPE	2024	juin	Dax	40	Duhalde Josse	désactivé	C25/30	20	
BPE	2024	mai	Hossegor	40	Duhalde Josse	béton poli	C25/30	10	
BPE	2024	décembre	Hossegor	40	Duhalde Josse	drainant	BC3	50	
BPE	2024	décembre	Saint Vincent de Tyros	40	Duhalde Ustaritz	balayé	C25/30	10	
BPE	2024	avril	Moliets	40	Duhalde Josse	bouchardé	C35/45	200	37
BPE	2024	septembre	Saint Vincent de Paul	40	Duhalde Josse	balayé	C25/30	100	
BPE	2024	juillet	Saint Vincent de Paul	40	Duhalde Josse	extrudé	C30/37	60	
BPE	2024	juin	Saint Geours de Marer	40	Duhalde Josse	dallage	C30/37	200	33
BPE	2024	juin	Saint Geours de Marer	40	Duhalde Josse	désactivé	C25/30	15	
Préfa	2024	année	Saint Geours de Marer	40	Materrup interne	DG & Lego blocs	C25/30	1200	
Préfa	2024	année	Urrugne	64	PBL	préfa sur mesure	C25/30	300	
Préfa	2024	année	Sainte Gladie	64	Etchegintza	préfa légère	B40-B60	900	
Préfa	2024	année	Sainte Gladie		Etchegintza	préfa légère	B40-B60	75	
Préfa	2024	année	Redon	56	Perin	préfa légère	B40-B60	1300	
Préfa	2024	année	Verne sur Seiche	35	Perin	préfa légère	B40-B60	700	
Préfa	2024	année	Nîmes	30	LIB	préfa légère	B40-B60	225	
Préfa	2024	année	Saint Vulbas	1	LIB	préfa légère	B40-B60	225	
Préfa	2024	année	Châteauneuf-sur-Isère	26	Fehr	préfa lourde	C30/37	15	
Préfa	2024	année	hochfelden	67	Fehr	préfa lourde	C30/37	40	
BPE	2025	février	Saint Geours de Marer	40	Unelo	BCR	BC5	700	
BPE	2025	février	Tarnos	40	Duhalde Josse	Dallage	C25/30	36	
BPE	2025	février	Moliets	40	Duhalde Josse	désactivé	C35/45	200	
BPE	2025	janvier	Anglet	64	Duhalde Ustaritz	poncé	C30/37	400	32
BPE	2025	février	Anglet	40	Duhalde Ustaritz	balayé	C25/30	30	
BPE	2025	février	Hossegor	40	Duhalde Josse	drainant	BC3	50	
BPE	2025	février	Saint Jean Pied de Port	64	Duhalde Ustaritz	bouchardé	C25/30	100	
BPE	2025	février	Saint Vincent de Tyros	40	Duhalde Ustaritz	balayé	C25/30	30	
BPE	2025	mars	Saint Geours de Marer	40	Duhalde Josse	fondation + dallage	C25/30	100	
BPE	2025	mars	Strasbourg	67	Ferh	fondations	C25/30	550	
BPE	2025		Moliets	40	Duhalde Josse	dallage extérieur	C30/37	150	
Préfa	2025	année	Urrugne	64	PBL	préfa sur mesure	C25/30	100	
Préfa	2025	année	Redon	56	Perin	préfa légère	B40-B60	225	
Préfa	2025	année	Nîmes		LIB	préfa légère	B40-B60	700	

^{*}Liste non exhaustive